

Техническое устройство, характеристики и область применения опор кровельных

www.termoclip.ru

Termoclip — производственная компания

Свыше 1000 наименований продукции

20 лет на рынке в строительном сегменте

Многоступенчатый контроль качества на базе собственной многофункциональной лаборатории

Более 270 сотрудников

Региональная сеть на территории России и стран СНГ

30 000 кв.м. собственных производственных площадей

Более 260 единиц основного оборудования

Рамы и опоры кровельные для монтажа инженерных коммуникаций и промышленного оборудования

www.termoclip.ru

Назначение и область применения

Опоры служат для распределения вертикальных и горизонтальных нагрузок от собственного веса, инженерных коммуникаций и промышленного оборудования на строительное основание.

Виды рам и конструкций: рамы под оборудование, рамы стойки для крепления труб І/Т-образные, Рамы П-образные для крепления труб и воздуховодов, Рамы под солнечные панели, переходные дорожки регулируемые и нерегулируемые, площадки технического обслуживания регулируемые с поручнями, площадки переходные одиночные и многоярусные, мостики облегченные, мостики L-S. мостики Н. лестницы технического обслуживания

Конструкции обладают минимальными требованиями к сборке и легко монтируются по месту эксплуатации. Возможность регулировки по высоте, длине и ширине (с шагом от 2мм) рамы позволяет использовать данные решения с разным оборудованием различных производителей (в классификаторе, на каждый тип рамы указаны максимальные посадочные и габаритные размеры оборудования, монтируемого на раму).

Материал опоры:

Кровельные опоры выполнены из микроармированного полимерного композита. Коврик EPDM обладает противоскользящими и виброизоляционными свойствами, а также способствует отведению влаги.

Траверса поворотной опоры выполнена из микроармированного полимерного композита.

Используемые материалы обладают высокой долговечностью, морозостойкостью и стойкостью к ультрофиолету.

Опоры кровельные

Преимущества

Высокие физико-механические свойства опоры.

Температурный диапазон эксплуатации, от -50 до +80°C:

Надежные и безопасные крепления, с учетом действующих нагрузок на конструкцию, без проведения сварочных работ;

Простотой монтажа без нарушения целостности кровельных покрытий;

Распределение нагрузки с возможностью точного позиционирования оборудования непосредственно по несущим балкам (элементам);

Установка промышленного оборудования на кровлях с уклоном до 6°, при применении регулируемых стоек и поворотных кровельных опор;

Применение стандартных рам, с учетом нагрузок и габаритов инженерного оборудования.

Обладает высокой стойкостью к ультрафиолетовому излучению. износостокойкостью и долговечностью:

Имеет высокие антискользящие свойства

Профиль монтажный

продукта

Выверенная

Ребра жесткости для обеспечения высокой несущей

належного соединения и точного позиционирования

Вспомогательные изделия

Угол поворотный ТАА 4F8 для задания угла профилей в опоре

универсальный 4F8 для соединения профилей

усиливающая 45° 38-41 L310 4F6 для повышения несущей способности

Кровельная дорожка

Общий вид

Материал:

Рабочая поверхность

ПВХ. обладающий высокой стойкостью к ультрафиолетовому излучению и долговечностью. Имеет высокие антискользящие свойства благодаря высокому рельефу. Габаритный размер -605х760мм,

рабочая поверхность каждого элемента составляет 600х600 мм.

Назначение:

Кровельная дорожка из ПВХ, предназначена для создания эксплуатируемых пешеходных дорожек на поверхности мембранной кровли. Для отвода воды через пешеходную дорожку на обратной стороне элементов сделаны специальные канавки, поэтому делать разрывы в дорожке не требуется.

Температурный диапазон эксплуатации, от °C – 50 до +80°С

Рамы под оборудование

Варианты крепления оборудования к раме

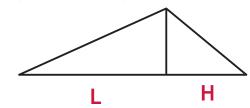
Примерами оборудования могут служить: кондиционеры, сплитсистемы, VRF/VRV, тепловые насосы, компрессоры, вентиляторы, приточные и вытяжные установки, чиллеры, холодильное оборудование

Наиболее распространенным вариантом установки оборудования является болтовое крепление через технологическое отверстие в каркасе оборудования и несущей балке рамы. Также, возможно опирание через виброизоляционные опоры или фиксация с помощью балочных зажимов.

Технические данные для расчета и подбора рам и опор кровельных

При подборе рам под оборудование Теглосір, необходимо обращать внимание и учитывать при расчете, влияние различного рода воздействий в зависимости от региона, местоположения сбъекта, высотности здания, несущей способности основания, воздействия снеговой и ветровой нагрузки, агрессивности среды, воздействия статических и динамических нагрузок и прочих факторов.

При необходимости изменения геометрических размеров рам, для обеспечения большей несущей способности или замене некоторых узловых элементов, следует руководствоваться расчетными значениями основных несущих элементов рамы.


Рекоммендуемые нагрузки

Тип опоры	Максимальна я рек. Нагрузка на мягкой кровле, kH	Максимальна я рек. Нагрузка на твердом основании, kH		
335x180	1,00	2,00		
335x335	2,00	4,00		
480x480	4,00	7,00		

Компенсация уклона кровли

При опирании рам и опор кровельных необходимо предусматривать мероприятия для горизонтального выравнивания основания для расположения оборудования или инженерных коммуникаций.

Использование Опоры поворотной 480 позволяет компенсировать уклон кровли до 6° в любом направлении.

Величина уклона кровли:

i=H:L

і – угол уклона ската

H – вертикальное расстояние от верхней точки ската до уровня нижней (высота кровли)

L – горизонтальное расстояние от нижней точки ската до верхней (заложение)

Уклон крыши соотношение градусы-проценты	
Градусы	%
1°	1,75
2°	3,50
3°	5,24
4°	7,00
5°	8,75
6°	10,51

Варианты кровельной опоры 335х180

Опора кровельная с горизонтальным профилем для крепления труб, лотков или создания рам без стоек

Опора кровельная с вертикльным профилем для создания рам со стойками

Опора кровельная с углом поворотным для возможности создания для рам на кровле с углоном

Варианты кровельной опоры 335х335

Опора кровельная с горизонтальным профилем для крепления труб, лотков или создания рам без стоек

Опора кровельная с вертикльным профилем для создания рам со стойками

Опора кровельная с углом поворотным для возможности создания для рам на кровле с углоном

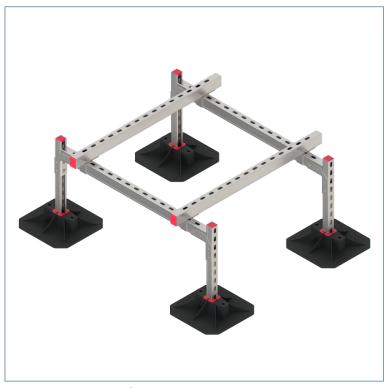
Варианты кровельной опоры 480х480

Опора кровельная

Опора кровельная с вертикльным профилем для создания рам со стойками

Опора кровельная с вертикльным профилем для создания рам со стойками

Технические характеристики и рекомендованные нагрузки для опор кровельных


Тип опоры	Максимальная рек. Нагрузка на мягкой кровле, kH	Максимальная рек. Нагрузка на твердом основании, kH
335x180	1,00	2,00
335x335	2,00	4,00
480x480	4,00	7,00

Виды рам и сопутствующих конструкций


Рамы без стоек

Допустимая нагрузка на конструкцию – от 560 до 1500 кг

Рама под оборудование L

Допустимая нагрузка на конструкцию – от 500 до680 кг

Рама под оборудование S

Допустимая нагрузка на конструкцию - от 1000 до 2100 кг

Рама под оборудование Н

Допустимая нагрузка на конструкцию – от 1500 до 4100 кг

Рама стойки І-образные для крепления труб

Допустимая нагрузка на конструкцию – от 100 до 200 кг

Рама стойки Т-образные для крепления труб

Допустимая нагрузка на конструкцию – от 100 до 200 кг

Рамы П-образные для крепления труб

Допустимая нагрузка на конструкцию – от 175 до 810 кг



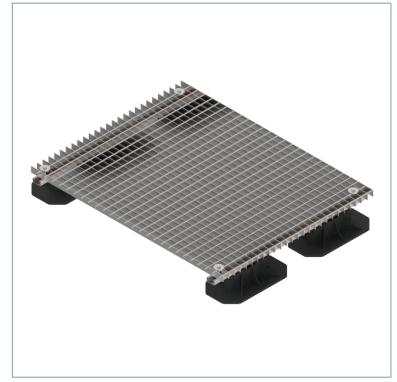
Рамы П-образные для крепления воздуховодов

Допустимая нагрузка на конструкцию – от 110 до 400 кг

Солнечные панели

Переходные дорожки нерегулируемые

Допустимая нагрузка на конструкцию – от 150 до 450 кг/м2


Переходные дорожки регулируемые

Допустимая нагрузка на конструкцию – от 330 до 450 кг/м2

Площадки тех. обслуживания регулируемые с поручнями

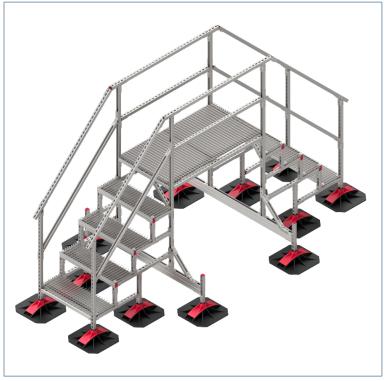
Допустимая нагрузка на конструкцию – до 450 кг/м2

Площадки переходные одиночные

Допустимая нагрузка на конструкцию – до 150 кг/м2

Площадки переходные многоярусные

Допустимая нагрузка на конструкцию –до 150 кг/м2

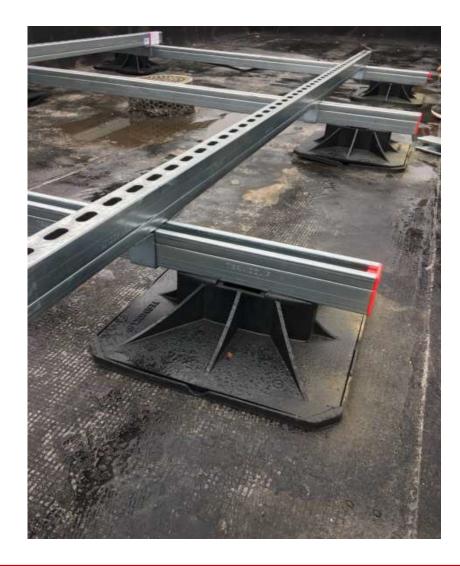

Переходные мостики облегченные

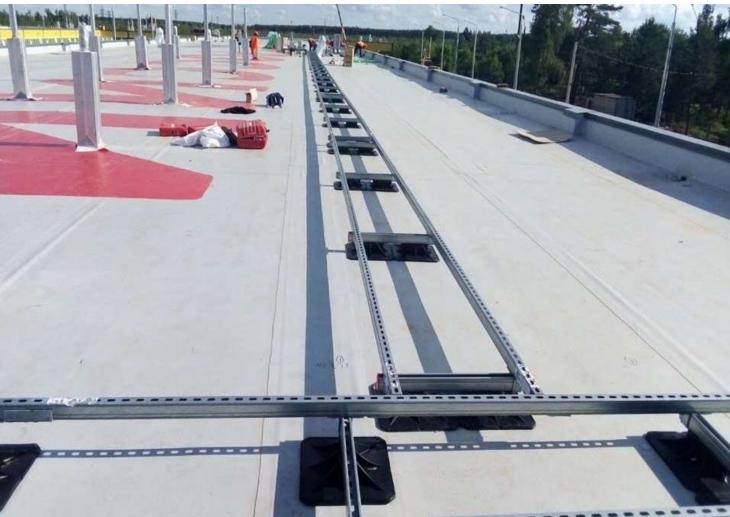
Допустимая нагрузка на конструкцию – до 150 кг/м2

Переходные мостики S-L

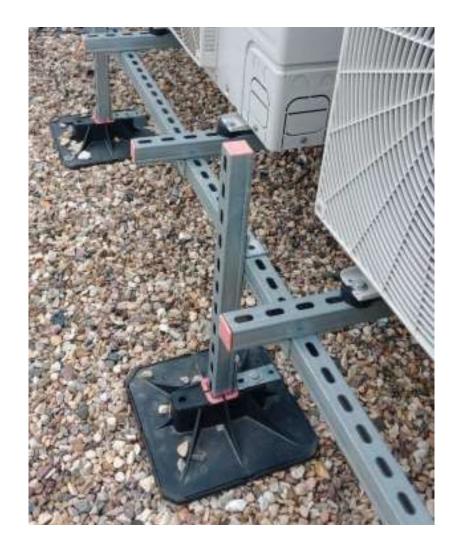
Допустимая нагрузка на конструкцию – до 450 кг/м2

Переходные мостики Н


Допустимая нагрузка на конструкцию –до 450 кг/м2



Лестницы технического обслуживания


Допустимая нагрузка на конструкцию – до 450 кг/м2

Рамы без стоек

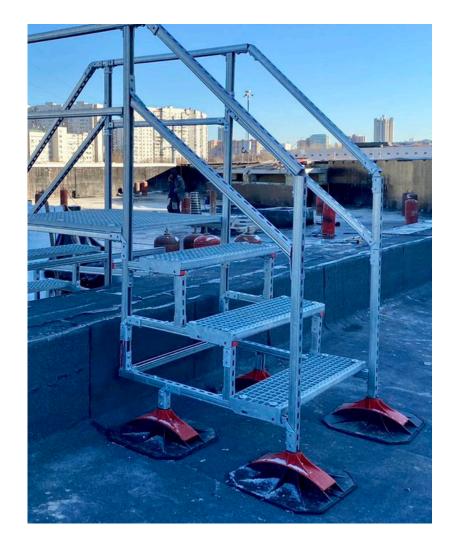
Рамы под оборудование L

Рамы под оборудование **S**

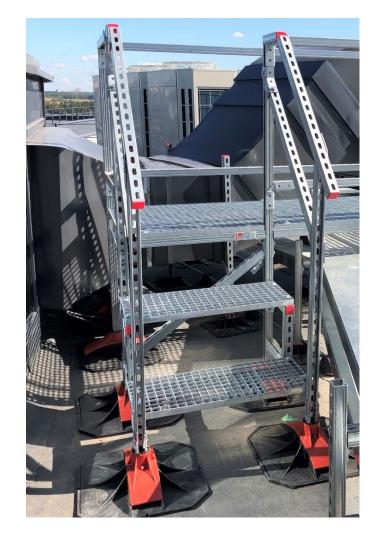


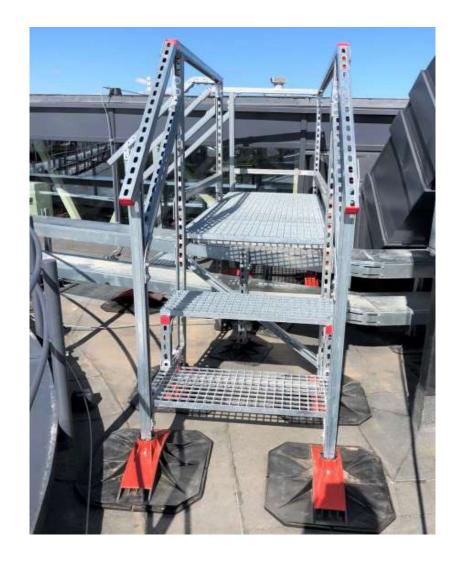
Рамы под оборудование **S**

Рамы под оборудование Н



Рамы под оборудование Н



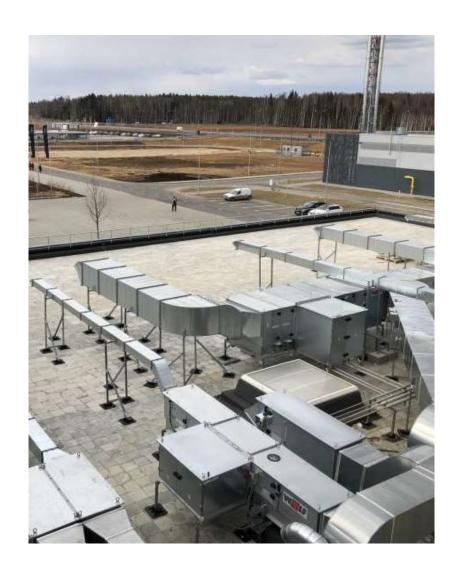

Переходные мостики кровельные

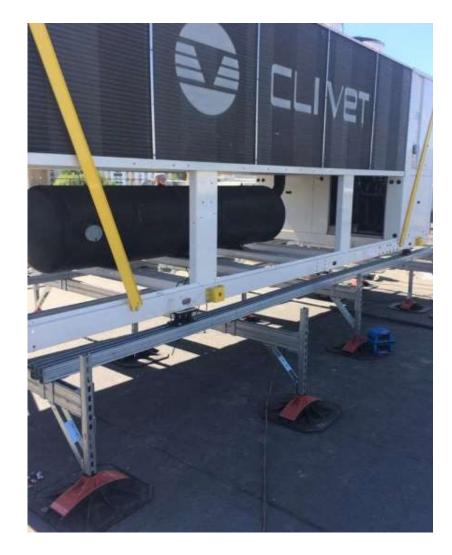
Переходные мостики кровельные

Крепление трубопроводов на кровле

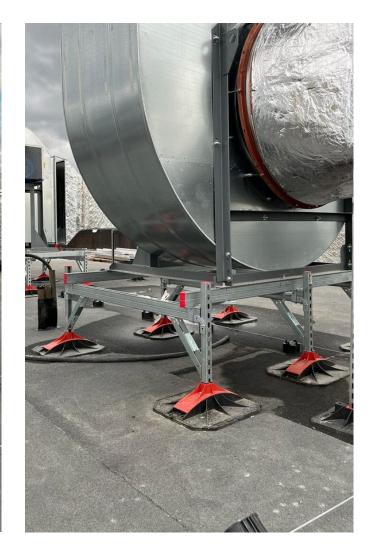
Н-образные рамы для крепления кабельных лотков

Termoclip www.termoclip.ru

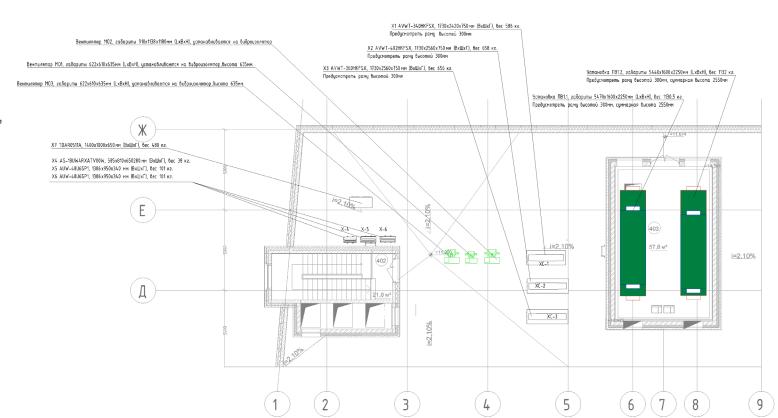

Н-образные рамы для крепления воздуховодов


Termoclip www.termoclip.ru

Закрепление оборудования и трасс инженерных систем на кровле



Закрепление оборудования и трасс инженерных систем на кровле



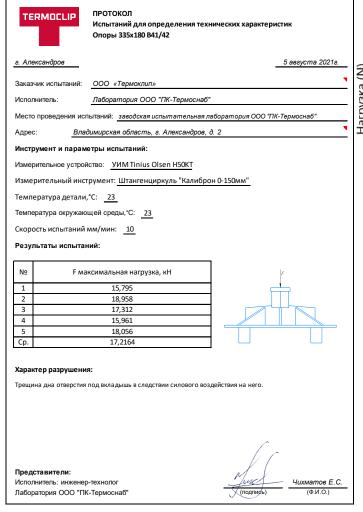
Исходные данные для начала проектирования рам на кровле

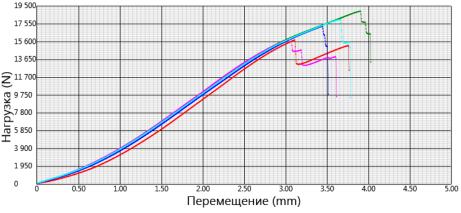
Прежде чем приступить к разработке проекта рам на кровле необходимо собрать все необходимые данные:

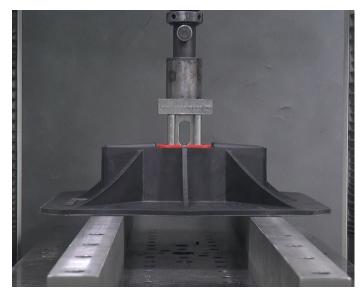
- архитектурные планы,
- паспорта на оборудование с указанием массы, габаритов, расчетных нагрузок,
- обозначение оборудования, указание зон установки и пр.,
- спецификация оборудования, изделий и материалов с указанием типа системы, материалов, количества и т. д.,
- планы и разрезы строительных конструкций с указанием зон для крепления (куда можно закрепиться),
- материалов основания и его технические характеристики,
- контактная информация о заказчике проекта.

Лаборатория. Входной, пооперационный и выходной контроль качества

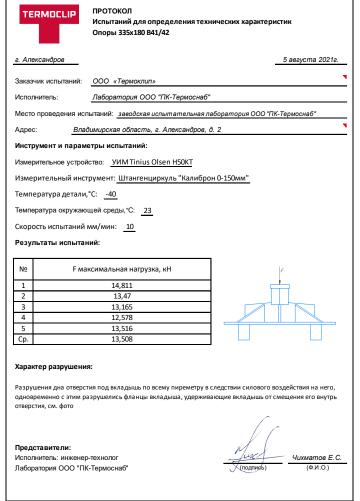
Лаборатория. Входной, пооперационный и выходной контроль качества

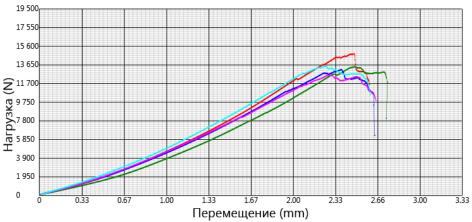


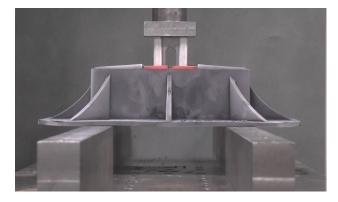

Лаборатория. Входной, пооперационный и выходной контроль качества



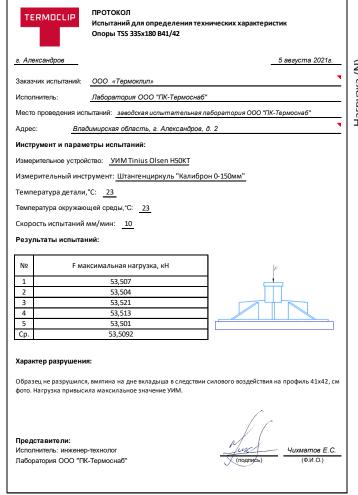
Проведение испытаний кровельной опоры 335х180мм с имитацией монтажа на мягкой кровле. Определение разрушающией нагрузки при t=+23°C

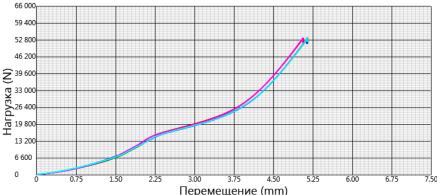





	Номер	Начальная	Максимальная		
	образца	высота	нагрузка, N		
		образца, тт			
	1	100	15795		
	2	100	18958		
	3	100	17312		
	4	100	15961		
	5	100	18056		
Среднее			17216		

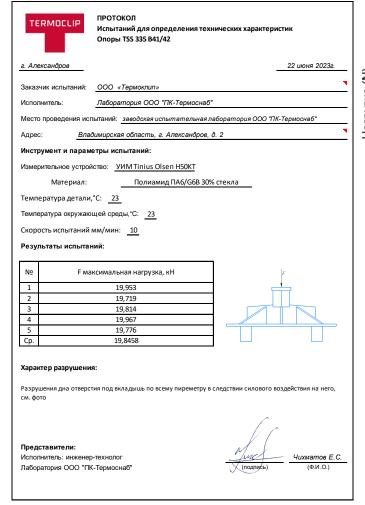
Проведение испытаний кровельной опоры 335х180мм с имитацией монтажа на мягкой кровле. Определение разрушающией нагрузки при t -40°C

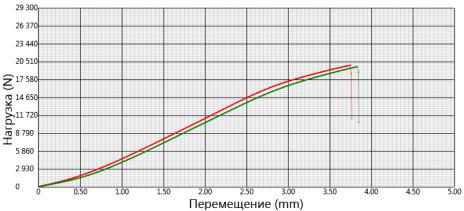


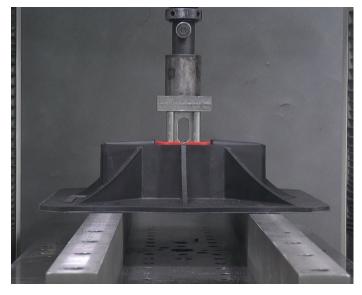


	Номер образца	Начальная высота образца, mm	Максимальная нагрузка, N
	1	100	14811
	2	100	
	3	100	13165
	4	100	12578
	5	100	13516
Среднее			13508

Проведение испытаний кровельной опоры 335х180мм с имитацией монтажа на тяжелом основании (бетоне). Определение разрушающией нагрузки при t=+23°C

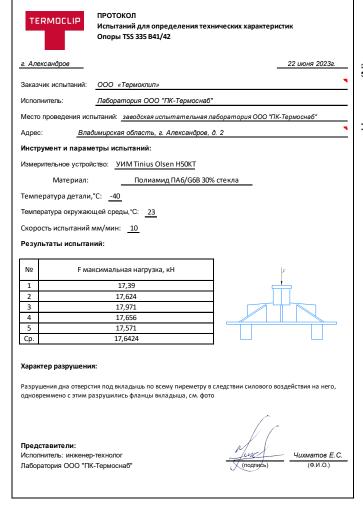


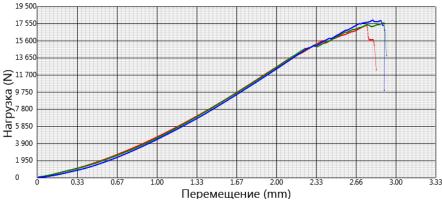


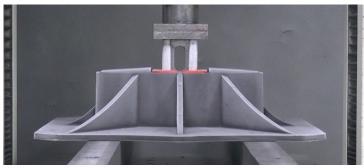


	Номер	Начальная	Максимальная		
	образца	высота	нагрузка, N		
		образца, тт			
	1	100	53507		
	2	100	53504		
	3	100	53521		
	4	100	53513		
	5	100	53501		
Среднее			53509		

Проведение испытаний кровельной опоры 335х335мм с имитацией монтажа на мягкой кровле. Определение разрушающией нагрузки при t=+23°C

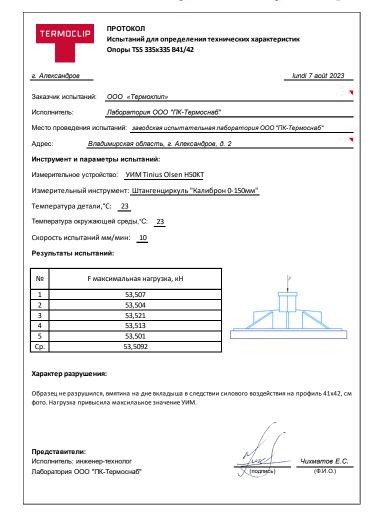


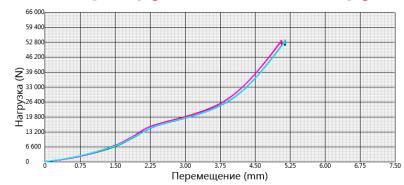



	Номер	Начальная	Максимальная		
	образца	высота	нагрузка, N		
		образца, тт			
	1	100	19953		
	2	100	19719		
	3	100	19814		
	4	100	19967		
	5	100	19776		
Среднее			19845		

Проведение испытаний кровельной опоры 335х335мм с имитацией монтажа на мягкой кровле. Определение разрушающией нагрузки при t=-40°C

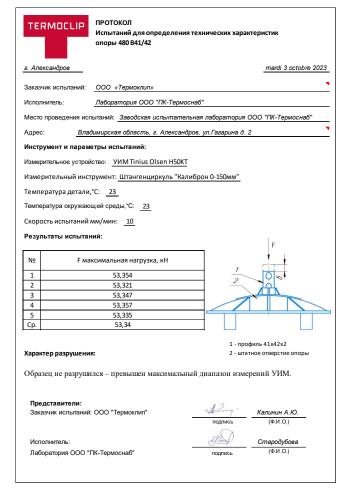


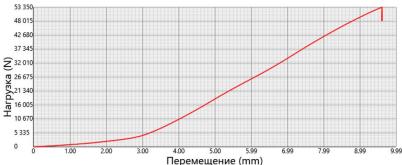






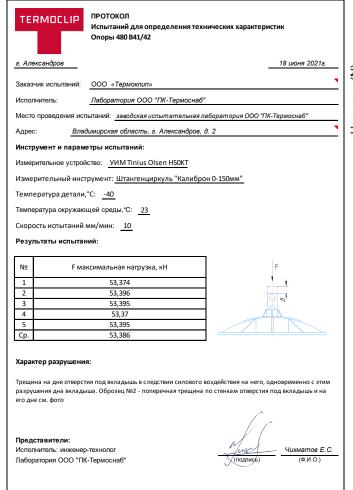
Проведение испытаний кровельной опоры 335х335мм имитацией монтажа на тяжелом основании (бетоне). Определение разрушающией нагрузки при t=23°C

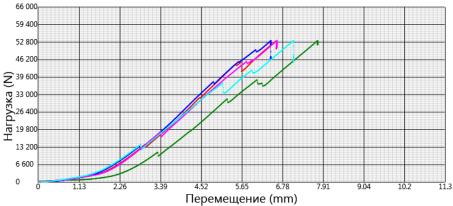




	Номер образца	Начальная высота	Максимальная нагрузка, N
		образца, тт	
	1	100	53507
	2	100	53504
	3	100	53521
	4	100	53513
	5	100	53501
Среднее			53509

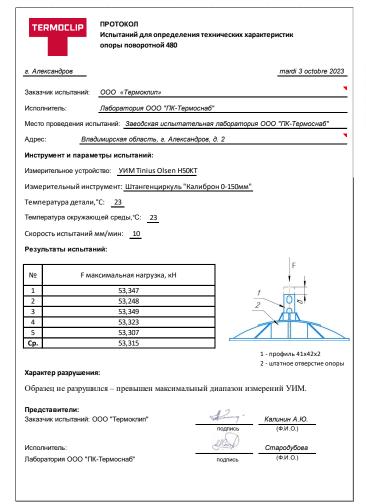
Проведение испытаний кровельной опоры 480х480мм с имитацией монтажа на мягкой кровле. Определение разрушающией нагрузки при t=+23°C

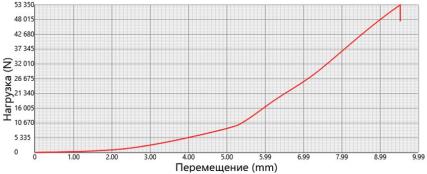


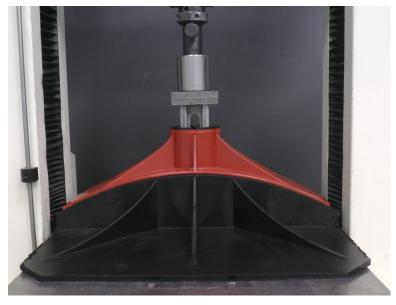


	Номер образца	Начальная высота	Максимальная нагрузка, N
		образца, тт	
	1	100	53354
	2	100	53321
	3	100	53347
	4	100	53357
	5	100	53335
Среднее			53342,8

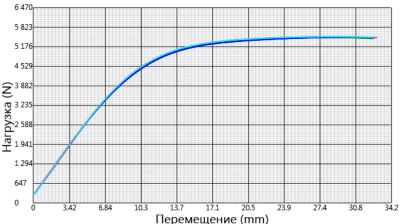

Проведение испытаний кровельной опоры 480х480мм с имитацией монтажа на мягкой кровле. Определение разрушающией нагрузки при t=-40°C

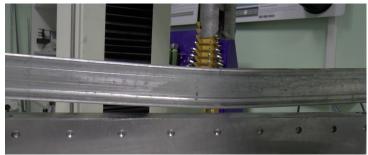




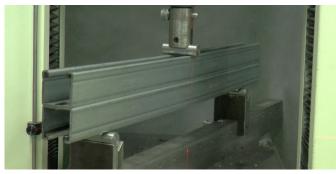


Проведение испытаний кровельной опоры 480х480мм с имитацией монтажа на тяжелом основании (бетоне). Определение разрушающией нагрузки при t=+23°C



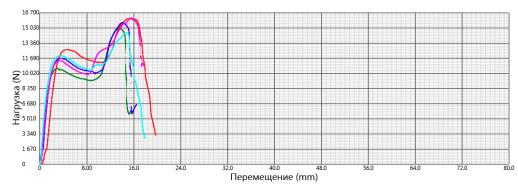

	Номер образца	Начальная высота образца, mm	Максимальная нагрузка, N		
	1	100	53347		
	2	100	53248		
	3	100	53349		
	4	100	53323		
	5	100	53307		
Среднее			53314,8		

Проведение испытаний монтажного профиля 41х41х2 мм L-1000 определение предельного момента, точечная нагрузка



	Номер	Ширина, mm	Толщина, mm	Площадь, mm	Модуль при	Максимальная	Максимальное	Нагрузка при	Напряжение	Прогиб до	PPL нагрузка при	PPL перемещения
	образца				изгибе, МРа	нагрузка, N	напряжение,	0.2%, N	при 0.2%, МРа	разрушения, тт	0.01%, N	при 0.01%
							MPa					
	1	41	41	1680	5,26	5496,67	5,98	3100	3,38	32,5	3100	6,07
	2	41	41	1680	5,18	5491,67	5,98	3000	3,27	32,5	3000	5,85
	3	41	41	1680	5,04	5495	5,98	3280	3,57	32,6	3280	6,57
	4	41	41	1680	5,24	5515	6	2900	3,15	32,8	2900	5,55
	5	41	41	1680	5,16	5515	6	3300	3,59	32,6	3300	6,51
Среднее		41	41	1680	5,18	5502,67	5,99	3120	3,39	32,6	3120	6,11

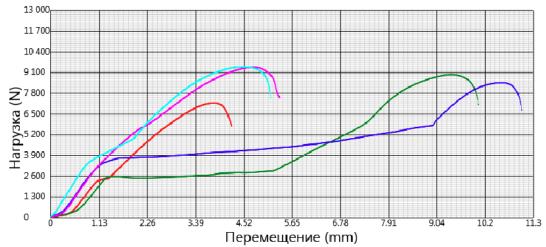
Проведение испытаний монтажного профиля 41х82х2 мм L-500 определение предельного момента, точечная нагрузка



	Номер	Ширина, mm	Толщина, mm	Площадь, mm	Модуль при	Максимальная	Максимальное	Нагрузка при	Напряжение при	Прогиб до	PPL нагрузка	PPL перемещения
	образца				изгибе, МРа	нагрузка, N	напряжение,	0.2%, N	0.2%, MPa	разрушения, тт	при 0.01%, N	при 0.01%
							MPa					
	1	41	11,78	483	2910	24156,67	318,44	12600	167	11	12400	1,81
	2	41	11,78	483	2660	24081,95	317,45	13900	184	11	13900	2,18
	3	41	11,78	483	3040	23983,33	316,15	11800	155	11	11100	1,56
	4	41	11,78	483	2610	24345	320,92	14600	192	11	14600	2,33
	5	41	11,78	483	2830	24136,67	318,17	12800	169	11	12800	1,87
Среднее		41	11,78	483	2810	24140,72	318,23	13100	173	11	13000	1,95

Проведение испытаний гайки профиля 41 8F M12 на определение максимально допустимой нагрузки на вырыв

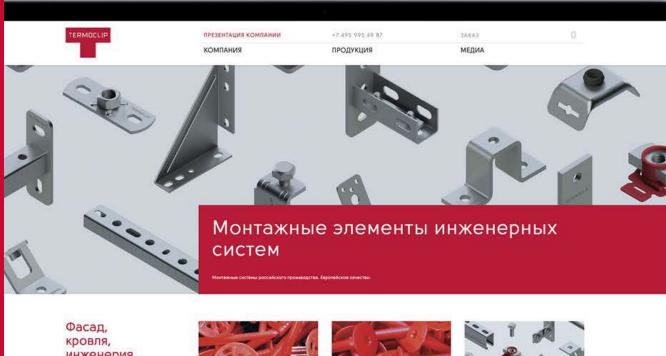




	Номер	Диаметр,	Максимальная	Максимальное
	образца	mm	нагрузка <i>,</i> N	удлинение
	1	12.0	16072	19.8
	2	12.0	14975	15.6
	3	12.0	15625	16.5
	4	12.0	16143	17.3
	5	12.0	14503	18.0
Среднее			15464	

Проведение испытаний гайки профиля 41 8F M12 на определение максимально допустимой нагрузки на срез

	Номер образца	Начальная высота образца, mm	Максимальная нагрузка, N	Нагрузка при 10% деформации, N
	1	100	7195	N/F
	2	100	8975	7446
	3	100	8467	8123
	4	100	9443	N/F
	5	100	9470	N/F
Среднее			8710	7785



Ознакомиться со всем ассортиментом продукции и оставить заявку вы можете на сайте компании

www.termoclip.ru

инженерия

Центральный офис

125466, Россия, Москва Родионовская 10к1

Тел.: +7 495 995 49 87 E-mail: info@termoclip.ru

Facebook Youtube

www.termoclip.ru

Отдел продаж

Тел.: +7 495 995 49 87 E-mail: zakaz@termoclip.ru

Технический отдел

Тел.: +7 495 995 49 87

E-mail: project@termoclip.ru